If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=-16H^2+65.5+5.5
We move all terms to the left:
-(-16H^2+65.5+5.5)=0
We get rid of parentheses
16H^2-65.5-5.5=0
We add all the numbers together, and all the variables
16H^2-71=0
a = 16; b = 0; c = -71;
Δ = b2-4ac
Δ = 02-4·16·(-71)
Δ = 4544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4544}=\sqrt{64*71}=\sqrt{64}*\sqrt{71}=8\sqrt{71}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{71}}{2*16}=\frac{0-8\sqrt{71}}{32} =-\frac{8\sqrt{71}}{32} =-\frac{\sqrt{71}}{4} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{71}}{2*16}=\frac{0+8\sqrt{71}}{32} =\frac{8\sqrt{71}}{32} =\frac{\sqrt{71}}{4} $
| 3.5x=42.25 | | A=-90+0.6t | | 2x-10=-82 | | 19x=18x+7 | | 20x+500=16x+600 | | A(3)-3=2x+5 | | A(2)-3=2x+5 | | (2/5)^(2x-3)=8/125 | | A(-2)-3=2x+5 | | 63=9(x+1) | | A(-5)-3=2x+5 | | 3+7y=28 | | -77=x-4(3-3x) | | 2(-3)+p=8-5-(-12) | | 3x-9+15=15 | | 5x(x+5)=120 | | m+5=12-17 | | -3+4j=33 | | 5/2y=14/15 | | 6/x=12/14 | | 6/x=14/12 | | x/28=14/16 | | x/28=16/2 | | x/28=16/14 | | -x+40=4(-x+7) | | 2(x-$4.00)=10.00 | | 2/x=14/18 | | x/28=2/14 | | 17y=7 | | 2/x=14/28 | | 9(15)-7(15)=x | | -8+9k=64 |